Which Wireless Tech is Right for You?

It seems these days all the electronics projects are wireless in some form. Whether you choose WiFi, Bluetooth Classic, Bluetooth Low Energy, ZigBee, Z-Wave, Thread, NFC, RFID, Cell, IR, or even semaphore or carrier pigeon depends a lot on the constraints of your project. There are a lot of variables to consider, so here is a guide to help you navigate the choices and come to a conclusion about which to use in your project.

We can really quickly reduce options down to the appropriate tech with just a few questions.

Read the full article at Hackaday: Which Wireless Tech is Right for You?

Searching For USB Power Supplies That Won’t Explode

USB power supplies are super cheap and omnipresent. They are the Tribble of my household. But they’re not all created equal, and some of them may even be dangerous. I had to source USB power supplies for a product, and it wasn’t easy. But the upside is that I got to tear them all apart and check out their designs.

Read the full article at Hackaday: Searching For USB Power Supplies That Won’t Explode

How to Know When an Accelerator is Not Right For Your Startup

A few weeks ago we ran an article on the benefits of accelerator programs. While I agreed with almost everything in it, the article still bothered me, and I wanted to start a discussion about when an accelerator is not appropriate. So many startups are regularly asked “have you thought about Kickstarter? Shark Tank? Are you raising money? YCombinator?” These questions are constantly ingrained into people’s brains and they come to think those are the only options.

The reality is that there are lots of ways to build a company, and Kickstarter, Shark Tank, angel investors, and accelerators are all new within the last few years, and they aren’t right for many people. So let’s look at when an accelerator is right for you.

Read the full article at Hackaday: How to Know When an Accelerator is Not Right For Your Startup

 

Tools of the Trade – Solder Paste Dispensing

The general process of circuit board assembly goes like this: You order your PCBs. You also order your components. For surface mount components, you apply solder paste to the pads, put the components on top, and then heat the board up so the solder paste flows and makes a bond. Then for through hole components you put the leads through the holes, and solder them with an iron or a solder wave or dip. Then you do an inspection for defects, program any microcontrollers, and finally test the completed board to make sure everything runs.

The tricky part is in volumes. If you’re only doing a few boards, it’s usually easiest to assemble them by hand. In the thousands you usually outsource. But new tools, and cheap hacked tools, have made it easier to automate small batches, and scale up into the thousands before outsourcing assembly.

In this new series which we’re calling Tools of the Trade we’ll be covering a variety of tools used for building products, and we’re starting with circuit board assembly. Let’s investigate our tools of the trade: solder paste dispensing.

Read the full article at Hackaday: Tools of the Trade – Solder Paste Dispensing

I am a writer for Hackaday.com!

I’m now a writer for the popular web site Hackaday.com. I’ll be writing regular pieces about startups and technology and being a badass engineer and hacking stuff together. I’ll be posting links to my articles here as well. I won’t post all my articles here, just the ones that are all me, called Original Content. The other kind of stories we do at Hackaday are called Dailies, and those are articles writing up things that other people do. Here I want to link to the things I do.

PCB Design Guidelines to Minimize RF Transmissions

There are certain design guidelines for PCBs that don’t make a lot of sense, and practices that seem excessive and unnecessary. Often these are motivated by the black magic that is RF transmission. This is either an unfortunate and unintended consequence of electronic circuits, or a magical and useful feature of them, and a lot of design time goes into reducing or removing these effects or tuning them.

You’re wondering how important this is for your projects and whether you should worry about unintentional radiated emissions. On the Baddeley scale of importance:

  • Pffffft – You’re building a one-off project that uses battery power and a single microcontroller with a few GPIO. Basically all your Arduino projects and around-the-house fun.
  • Meh – You’re building a one-off that plugs into a wall or has an intentional radio on board — a run-of-the-mill IoT thingamajig. Or you’re selling a product that is battery powered but doesn’t intentionally transmit anything.
  • Yeeeaaaaahhhhhhh – You’re selling a product that is wall powered.
  • YES – You’re selling a product that is an intentional transmitter, or has a lot of fast signals, or is manufactured in large volumes.
  • SMH – You’re the manufacturer of a neon sign that is taking out all wireless signals within a few blocks.

Read the full article at Hackaday: PCB Design Guidelines to Minimize RF Transmissions